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ABSTRACT

We revisit the role of longitudinal waves in driving the solar wind. We study how the the p-mode-

like vertical oscillation on the photosphere affects the properties of solar winds under the framework of

Alfvén-wave-driven winds. We perform a series of one-dimensional magnetohydrodynamical numerical

simulations from the photosphere to beyond several tens of solar radii. We find that the mass-loss

rate drastically increases with the longitudinal wave amplitude at the photosphere up to ∼ 4 times, in

contrast to the classical understanding that the acoustic wave hardly affects the energetics of the solar

wind. The addition of the longitudinal fluctuation induces the longitudinal-to-transverse wave mode

conversion in the chromosphere, which results in the enhanced Alfvénic Poynting flux in the corona.

Consequently, the coronal heating is promoted to give higher coronal density by the chromospheric

evaporation, leading to the increased mass-loss rate. This study clearly shows the importance of

the longnitudinal oscillation in the photosphere and the mode conversion in the chromosphere in

determining the basic properties of the wind from solar-like stars.

Keywords: magnetohydrodynamics (MHD) – methods: numerical – Sun: solar wind

1. INTRODUCTION

Inspired by the observed double-tail structure of

comets, which indicates the presence of gas outflow

(Biermann 1951), Parker (1958) predicted the outward

expansion of the hot coronal plasma, which results in

the formation of transonic outflow. Later on, the in-

situ measurement by the Mariner 2 Venus probe con-

firmed the existence of supersonic plasma streams from

the Sun, which is now called the solar wind (Neugebauer

& Snyder 1966). Hot coronae and stellar winds are also

ubiquitously observed in low-mass main sequence stars

that possess a surface convection zone (Wood et al. 2005,

2021; Güdel et al. 2014; Vidotto 2021)

In the framework of the thermally-driven wind model,

the energy source of the solar wind is the thermal en-

ergy of the solar corona. The thermally-driven wind

model therefore predicts that faster solar wind emanates

from hotter regions of the corona, and vice versa. In re-

ality, however, several observations indicate that high-

speed solar wind emanates from relatively cool parts of

the corona. Fast solar wind is known to originate from

coronal holes (Krieger et al. 1973; Kohl et al. 2006),

which exhibit cooler temperature than the other regions

of the corona (e.g., Withbroe & Noyes 1977; Narukage

et al. 2011). The observed anti-correlation between the

freezing-in temperature and the velocity of the solar

wind (Geiss et al. 1995; von Steiger et al. 2000) also

supports the fact that fast solar wind originates in cool
portions of the corona. These observations indicate that

magnetic field plays a substantial role in the solar wind

acceleration.

It is believed that the convection beneath the photo-

sphere is the source of the energy for the hot corona

and the solar wind (Klimchuk 2006; McIntosh et al.

2011). Convective fluctuations excite various modes

of waves that propagate upward (Lighthill 1952; Stein

1967; Stepien 1988; Bogdan & Knoelker 1991). Mag-

netic reconnection between open and closed field lines is

another possible source of transverse waves (Nishizuka

et al. 2008), in addition to the direct ejection of heated

plasma (Fisk 2003). Among various types of waves,

Alfvén(ic) waves have been highlighted as a reliable

agent to effectively transfer the kinetic energy of the con-

vection to the corona and the solar wind via the Poynt-

ing flux (e.g., Belcher 1971; Shoda et al. 2019; Sakaue
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& Shibata 2020; Matsumoto 2021). This is first because

they are not so much affected by the shock dissipation

owing to the incompressible nature, unlike compressible

waves, which easily steepen to form shocks as a result

of the amplification of the velocity amplitude in the

stratified atmosphere, and second because they do not

refract, unlike fast-mode magnetohydronamical (MHD

hereafter) waves (e.g., Matsumoto & Suzuki 2014), but

do propagate along magnetic field lines (Alazraki & Cou-

turier 1971; Bogdan et al. 2003).

In recent years transverse waves have been detected

in the chromosphere (Okamoto et al. 2007; De Pontieu

et al. 2007; McIntosh et al. 2011; Okamoto & De Pon-

tieu 2011; Srivastava et al. 2017), whereas it is still under

debate whether the sufficient energy required for the for-

mation of the corona and the solar wind propagates into

the corona (Thurgood et al. 2014).

Once Alfvénic waves enter the corona, the key is how

the Poynting flux is transferred to the thermal and ki-

netic energies of the coronal plasma via the dissipation

of the waves. Various damping processes of Alfvénic

waves have been explored, including turbulent cascade

(Velli et al. 1989; Matthaeus et al. 1999; Cranmer et al.

2007; Verdini et al. 2010; Howes & Nielson 2013; Perez

& Chandran 2013; Shiota et al. 2017; Adhikari et al.

2020; Zank et al. 2021), nonlinear mode conversion to

compressible waves (Kudoh & Shibata 1999; Suzuki &

Inutsuka 2005, 2006; Farahani et al. 2021), resonant ab-

sorption (Ionson 1978; Van Doorsselaere et al. 2004; An-

tolin et al. 2015) and phase mixing (Heyvaerts & Priest

1983; De Moortel et al. 2000; Magyar et al. 2017).

In contrast to Alfvénic waves, acoustic waves have not

been considered to be a major player in the coronal

heating because the acoustic waves that are excited by

p-mode oscillations at the photosphere (e.g., Lighthill

1952; Felipe et al. 2010) rapidly steepen to form shocks

before reaching the corona (Stein & Schwartz 1972;

Priest 2014; Cranmer et al. 2007) . However, Morton

et al. (2019) pointed out the contribution of p-mode os-

cillations to the generation of Alfvénic waves via the

mode conversion from longitudinal waves to transverse

waves (Cally & Hansen 2011). The aim of the present

paper is to investigates roles of the acoustic waves that

are excited by vertical oscillations at the photosphere

in the Alfvén wave-drive wind. For this purpose, we

perform MHD simulations that handle the propagation,

dissipation, and mode-conversion of both transverse and

longitudinal waves from the photosphere to several tens

of solar radii with self-consistent heating and cooling.

In Section 2 we describe the setup of our simulations.

We present main results in Section 3. We discuss related

topics in Section 4 and summarize the paper in Section

5.

2. METHODS

We consider the magnetohydrodynamics of the solar

wind in one-dimensional (1D hereafter) open magnetic

flux tubes from the photosphere at r = R� (solar sur-

face) to several tens of solar radii. Figure 1 shows an

overview of our model.

2.1. Basic Equations

We consider a one-dimensional (spherical symmetric,

∂/∂θ = ∂/∂φ = 0), super-radially expanding flux tube.

The cross section of the flux tube is defined by the filling

factor of the open flux tube fop(r), which is lower than

unity on the photosphere and asymptotically approaches

unity as r gets larger. The conservation of the open

magnetic flux Φop yields the following relation.

|Br(r)| r2fop(r) = |Br,�|R2
�f

op
� = Φop, (1)

where X� represents the value of X on the photosphere.

We note that Φop is constant in each simulation.

We solve the one-dimensional MHD equations along

the flux tube characterized by fop(r). For simplicity,

we consider the polar wind, which is not affected by

the solar rotation. In deriving the MHD equations in

a super-radially expanding flux tube, the scale factors

of the coordinate system are required. Here, we assume

that the magnetic flux tube expands isotropically in θ

and φ directions. In terms of scale factors, this assump-

tion yields

hr = 1, hθ = hφ = r
√
fop. (2)

Using these scale factors, the MHD equations in an

expanding flux tube is derived (see Shoda & Takasao

(2021) for derivation). The basic equations are given as

follows.

∂

∂t
ρ+

1

r2fop
∂

∂r

(
ρvrr

2fop
)

= 0, (3)

∂

∂t
(ρvr) +

1

r2fop
∂

∂r

[(
ρv2r + pT

)
r2fop

]
= −ρGM�

r2
+
(
ρv2
⊥ + 2p

) d
dr

ln
(
r
√
fop
)
, (4)

∂

∂t
(ρv⊥) +

1

r2fop
∂

∂r

[(
ρvrv⊥ −

1

4π
BrB⊥

)
r2fop

]
=

(
BrB⊥

4π
− ρvrv⊥

)
d

dr
ln
(
r
√
fop
)

+ ρDturb
v⊥

, (5)
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Figure 1. Schematic pictures of the model. Left picture is the overview of the model. The black solid lines represent the
shape of the open flux tube, which expands super-radially. Right picture in the blue frame is the schematic picture of the
wave dissipation in the model. The black dashed curve represents solar surface. Red characters refer to the physical processes
considered in this model.

1

r2fop
∂

∂r

(
Brr

2fop
)

= 0, (6)

∂

∂t
B⊥ +

1

r2fop
∂

∂r

[
(vrB⊥ − v⊥Br) r

2fop
]

= (vrB⊥ − v⊥Br)
d

dr
ln
(
r
√
fop
)

+
√

4πρDturb
b⊥

, (7)

∂

∂t
e+

1

r2fop
∂

∂r

[(
(e+ pT ) vr −

Br
4π

(v⊥ ·B⊥)

)
r2fop

]
= −ρvr

GM�
r2

+QC −QR, (8)

where v, B, ρ and p are velocity, magnetic field, den-

sity and gas pressure, respectively. v⊥ and B⊥ are the

perpendicular (θ and φ) components of v and B, respec-

tively, that is,

v⊥ = vθeθ + vφeφ, B⊥ = Bθeθ +Bφeφ, (9)

where eθ and eφ are unit vectors in θ and φ direction,

respectively. M� is the solar mass. e denotes the total

energy density per unit volume given by

e = eint +
1

2
ρv2 +

B2
⊥

8π
, (10)

where eint is the internal energy density per unit volume.

pT denotes the total pressure:

pT = p+
B2
⊥

8π
. (11)

Dturb
v⊥

and Dturb
b⊥

represent the phenomenological tur-

bulent dissipation of Alfvén waves (see Section 2.3 for

detail).

QC and QR represent the conductive heating and ra-

diative cooling per unit volume, respectively. In terms

of conductive flux qcnd, QC is given by

QC = − 1

r2fop
∂

∂r

(
qcndr

2fop
)
. (12)

For qcnd, we employ the Spitzer-Härm type conductive

flux (Spitzer & Härm 1953) that strongly depends on

temperature and transports energy preferentially along

the magnetic field line. Besides, to speed up the simula-

tion without loss of reality, we quench the conductivity

in the low-density region. qcnd is then employed as fol-

lows.

qcnd = −min

(
1,

ρ

ρcnd

)
Br
|B|κ0T

5/2 dT

dr
(13)

where κ0 = 10−6 erg cm−1 s−1 K−7/2. We set ρcnd =

10−20 g cm−3, following Shoda et al. (2020).
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The radiative cooling rate is given by a linear combi-

nation of optically thick and thin components as follows.

QR = Qthck
R ξrad +Qthin

R (1− ξrad) , (14)

where Qthck
R and Qthin

R correspond to the optically thick

and thin radiative cooling rates, respectively. The con-

trol parameter ξrad should satisfy ξrad ≈ 1 in the pho-

tosphere and ξrad ≈ 0 from above the transition region.

Although the profile of ξrad is given as a solution of ra-

diative transfer, here we simply model it as follows.

ξrad = max

(
0, 1− pchr

p

)
, (15)

where we set pchr = 0.1p�. Thus the radiation is as-

sumed to be optically thick in p & pchr and optically

thin in p . pchr.

Following Gudiksen & Nordlund (2005), we approxi-

mate the optically thick cooling by an exponential cool-

ing that forces the local internal energy to approach the

reference value erefint:

Qthck
R =

1

τ thck
(
eint − erefint

)
, (16)

where we set the time scale as follows.

τthck = 0.1

(
ρ

ρ̄�

)−1/2
s, (17)

where ρ̄� = 1.87 × 10−7 g cm−3, is the mean (time-

averaged) mass density in the photosphere. The refer-

ence internal energy is calculated once the correspond-

ing reference temperature T ref(r) is given. Here, we set

T ref(r) = T�.

The optically-thin cooling function is composed of two

different contributions. In the chromospheric temper-

ature range, we employ the radiative cooling function

given by Goodman & Judge (2012) (QGJ), while in the

coronal temperature range, the loss function Λ(T ) is

given by the CHIANTI atomic database.

Qthin
R = QGJ(ρ, T )ξ2 + nHneΛ(T ) (1− ξ2) , (18)

where we set

ξ2 = max

(
0,min

(
1,
TTR − T

∆T

))
,

where TTR = 15000 K and ∆T = 5000 K.

2.2. Equation of state

The hydrogen in the lower atmosphere (photosphere

and chromosphere) of the Sun is partially ionized be-

cause the temperature there is not sufficiently high. In

this work, the effect of the partial ionization is consid-

ered in the equation of state. The internal energy is

composed of the random thermal motion of the parti-

cles and the latent heat of the hydrogen atoms, which is

given by

eint =
p

γ − 1
+ nHχIH, nH = ρ/mH, (19)

where nH is the number density of hydrogen atoms, χ is

the ionization degree and IH = 13.6 eV is the ionization

potential of hydrogen. For simplicity, the formation of

H2 molecules is not considered. The thermal equilib-

rium is assumed with respect to ionization, in which the

ionization degree is given by the Saha-Boltzmann equa-

tion.

χ2

1− χ =
2

nHλ3e
exp

(
− IH
kBT

)
, (20)

where λe is the thermal de Broglie wavelength of an

electron:

λe =

√
h2

2πmekBT
. (21)

Note that pressure and ionization degree are connected

by

p = (1 + χ)nHkBT. (22)

2.3. Phenomenology of Alfvén-wave turbulence

In heating the solar wind, energy cascading is required

to convert the kinetic and magnetic energies to heat by

viscosity and resistivity. Alfvén-wave turbulence, a type

of MHD turbulence which is triggered by the collision

of counter-propagating Alfvén waves (e.g., Goldreich &

Sridhar 1995; Lazarian 2016), is a promising process

for the energy cascading in the solar wind. Because

Alfvén wave turbulence is a three dimensional process,

and thus, to deal with the turbulent dissipation in the

one-dimensional system, one needs to model the effect

of turbulence. Here we adopt a phenomenological model

of Alfvén wave turbulence (Hossain et al. 1995; Dmitruk

et al. 2002; van Ballegooijen & Asgari-Targhi 2016),

which yields the (averaged) turbulent heating rate in

terms of mean-field quantities (Elsässer variables). Fol-

lowing Shoda et al. (2018a), the turbulent dissipation

terms in Eq.s (5) and (7) are explicitly given by

Dturb
vθ,φ

= − cd
4λ⊥

(∣∣∣z+θ,φ∣∣∣ z−θ,φ +
∣∣∣z−θ,φ∣∣∣ z+θ,φ) (23)

and

Dturb
bθ,φ

= − cd
4λ⊥

(∣∣∣z+θ,φ∣∣∣ z−θ,φ − ∣∣∣z−θ,φ∣∣∣ z+θ,φ) , (24)
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Model 〈δv+⊥,�〉 〈δv‖,�〉 Br,� fop
� fop

chr/f
op
� rout Ṁ vr,out

[km s−1] [km s−1] [G] [M� yr−1] [km s−1]

B0V06 0 0.6 1.3× 10−4 1.00× 10−3 100 95.6R� accretion

BsV00 0.6 0 1300 1.00× 10−3 100 99.5R� 1.32× 10−14 688.05

BsV04 0.6 0.4 1300 1.00× 10−3 100 99.5R� 1.75× 10−14 687.77

BsV06 0.6 0.6 1300 1.00× 10−3 100 99.5R� 1.97× 10−14 697.02

BsV09 0.6 0.9 1300 1.00× 10−3 100 99.5R� 2.63× 10−14 701.24

BsV12 0.6 1.2 1300 1.00× 10−3 100 99.5R� 3.10× 10−14 716.19

BsV15 0.6 1.5 1300 1.00× 10−3 100 99.5R� 3.54× 10−14 691.51

BsV18 0.6 1.8 1300 1.00× 10−3 100 39.1R� 4.18× 10−14 633.64

BsV21 0.6 2.1 1300 1.00× 10−3 100 39.1R� 4.57× 10−14 635.62

BsV27 0.6 2.7 1300 1.00× 10−3 100 39.1R� 5.09× 10−14 560.80

BsV30 0.6 3.0 1300 1.00× 10−3 100 39.1R� 4.97× 10−14 561.31

BwV00 0.6 0 325 4.00× 10−3 25 95.3R� 1.26× 10−14 586.55

BwV06 0.6 0.6 325 4.00× 10−3 25 95.3R� 2.57× 10−14 581.24

BwV18 0.6 1.8 325 4.00× 10−3 25 37.8R� 4.76× 10−14 460.09

Table 1. Input parameters (2nd - 7th columns) and output results (8th - 9th columns) of different cases.

where λ⊥ is a perpendicular correlation length and z±⊥
are Elsässer variables (Elsasser 1950) defined by

z±θ,φ = vθ,φ ∓Bθ,φ/
√

4πρ. (25)

We assume that the correlation length increases with

the radius of the flux tube.

λ⊥ = λ⊥,�
r

R�

√
fop

fop�
. (26)

Because the Alfvénic fluctuations are localized in inter-

granular lanes on the photosphere (Chitta et al. 2012),

we set λ⊥ as a typical width of inter-granular lanes.

λ⊥,� = 150 km (27)

The dimensionless coefficient cd is chosen following van

Ballegooijen & Asgari-Targhi (2017) as

cd = 0.1. (28)

2.4. Geometory of Flux Tubes

In modeling the solar wind in a one-dimensional flux

tube, we need to prescribe the filling factor of the open

flux tube fop as a function of r. Since the open flux

tube is localized on the photosphere and expands as the

radial distance increases, fop(r) should be an increasing

function of r that asymptotically approaches unity.

Following Shoda et al. (2020), we employ the two-step

expansion of the flux tube, which is described in terms

of fop(r) as

fop(r) = fop� f
exp
1 (r)f exp2 (r), (29)

where f exp1 (r) and f exp2 (r) represent the first and second

expansions, respectively.

The first expansion occurs in the chromosphere un-

til one flux tube merges with the adjacent flux tube.

Although the direct observation of chromospheric mag-

netic field is still missing, because the expansion occurs

in response to the exponential decrease in the ambient

gas pressure, it would be straightforward to assume that

the filling factor increases exponentially in height. For

this reason, the following formulation is adopted.

f exp1 (r) = min

[
fopcor/f

op
� , exp

(
r −R�
Hmag

)]
, (30)

where fopcor is the open-flux filling factor in the corona

and Hmag is the scale height of flux-tube expansion. We

relate Hmag to the pressure scale height on the photo-

sphere H� by

Hmag = 2.5H� = 2.5
a2�
g�
, (31)

where a� = 6.9 km s−1 and g� = 0.274 km s−2 are the

sound speed and the gravitational acceleration on the

photosphere, respectively.
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The second expansion occurs in the extended corona

with a typical length scale of ∼ R�. Following Kopp &

Holzer (1976), we adopt the coronal expansion as

f exp2 (r) =
F(r) + fopcor + F (R�) (fopcor − 1)

fopcor(F(r) + 1)
, (32)

where

F(r) = exp

(
r − rexp
σexp

)
. (33)

We adopt the fixed values of rexp/R� = 1.3, σexp/R� =

0.5. The values of fop� and fopcor are summarized in Table

1.

2.5. Simulation Setup

The simulation domain extends from the photosphere

(r = R�) to the outer boundary (r = rout) located at

nearly r = 100R� in most cases. The radial distance of

rout for each run is tabulated in Table 1. At r = rout,

we set the free boundary conditions. A great advantage

to set the inner boundary at the photosphere is that we

can self-consistently calculate the density at the coronal

base, which is one of the critical parameters to determine

the mass loss rate, Ṁw, of the solar wind (e.g., Lamers

& Cassinelli 1999). The coronal base, where the den-

sity is nearly ten orders of magnitude smaller than the

density at the photosphere, is frequently set as the inner

boundary of simulations for solar and stellar winds (Ver-

dini et al. 2010; Lionello et al. 2014; Shoda et al. 2019).

However, the coronal-base density is determined by the

chromospheric evaporation as a result of the energy bal-

ance between conductive heating and radiative cooling

at the transition region (Rosner et al. 1978; Withbroe

1988). Specifically, when the heating in the corona in-

creases, denser chromospheric material is heated up by

the thermal conduction from the corona, resulting in an

increase in the density at the coronal base. Since our

numerical simulations solve these heating and cooling

processes in a self-consistent manner, we can obtain re-

liable Ṁw independently from the treatment of the inner

boundary at the photosphere.

The size of the spatial grid, which varies with r, is set

as follows:

∆r = max

[
∆rm,min

[
∆rM,

2εge
2 + εge

(r − rge) + ∆rm

]]
(34)

where we set ∆rm = 20 km, ∆rM = 2000 km, εge =

0.01, and rge = 1.04R�. Figure 2 shows ∆r as a function

of r.

At the inner boundary, we fixed the temperature to

the photospheric value,

T� = 5770 K. (35)

10−3 10−2 10−1 100 101 102

r/R� − 1

20

200

2000

∆
r

[k
m

]

Figure 2. The radial profile of the grid size, ∆r.

The initial temperature is set to T = T� in the entire

simulation region. We initially set the hydrostatic den-

sity distribution with T = T� in the inner region that is

extended with a power-law profile in the outer region:

ρ̄init(r) = max

[
ρ�e

− r−R�H� , ρw,0(r/R� − 1)−2.5
]
, (36)

where we adopt ρw,0 = 10−19 g cm−3 unless otherwise

stated. The inner hydrostatic profile switches to the

outer power-law one at r/R� − 1 ≈ 0.01. We note that

although the outer density is larger than the hydrostatic

value with T = T�, it is still smaller than the observed

density in the solar corona and wind by a factor of five.

The transverse components of velocity and magnetic

field correspond to the amplitudes of Alfvénic waves.

The inner boundary condition of them are defined in
terms of the Elsässer variables (Eq. (25)) in the pho-

tosphere. We set the free boundary condition to the

incoming component at the inner boundary so that it is

absorbed without being reflected there:

∂

∂r
z−θ,φ

∣∣∣∣
�

= 0 (37)

To inject MHD waves from the photosphere, we im-

pose time dependent boundary conditions for the den-

sity, velocity and perpendicular magnetic field. The

transverse perturbation is injected via the outgoing com-

ponent of the Elsässer variables with a broadband spec-

trum,

z+θ,φ,� ∝
100∑
N=0

sin
(
2πf tN t+ φtN

)
/
√
f tN , (38)
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where φtN is a random phase and

1.00× 10−3Hz ≤ f tN ≤ 1.00× 10−2 Hz. (39)

The longitudinal perturbation, which originates from

the p-mode oscillation, is excited with the density,

ρ� = ρ�

(
1 +

vr,�
a�

)
, (40)

where ρ� = 1.88 g cm−3, and the radial velocity,

vr,� = δv‖,�(t), (41)

with

δv‖,� ∝
100∑
N=0

sin
(
2πf lN t+ φlN

)
/
√
f lN , (42)

where φlN is a random phase and

3.33× 10−3Hz ≤ f lN ≤ 1.00× 10−2 Hz. (43)

This corresponds to the period range between 100 sec-

onds and 5 minutes, which is narrower than that of the

transverse component.

We tabulate the transverse and longitudinal com-

ponents of the root-mean-squared velocity amplitudes,

〈δv⊥,�〉 and 〈δv‖,�〉, of the input fluctuations at the pho-

tosphere in Table 1. We take 〈δv⊥,�〉 = 〈δv‖,�〉 = 0.6

km s−1 as standard values for the velocity perturbation

on the photosphere. We here note that, because the

only outward flux is selectively injected from the photo-

sphere in both transverse and longitudinal components,

the corresponding “random” velocity amplitude is about√
2 times larger than these values, which are comparable

to observed transverse (Matsumoto & Kitai 2010) and

longitudinal (Oba et al. 2017a) amplitudes of ∼ 1 km

s−1.

Each model is labeled BxVyy, where “x” indicates

the type of the magnetic flux tube and “yy” denotes

the amplitude of 〈δv‖,�〉. We classify the cases into

three groups by the effect of the magnetic field. The

first group, which includes only one case, is labeled x

= 0. In this case, we switch off Alfvénic waves by set-

ting 〈δv⊥,�〉 = 0; we test whether the formation of the

corona and wind is possible or not only by longitudinal

waves. The result of this case is presented in Appendix

A (see also Suzuki 2002).

The second and third groups are labeled x = s and

w, which stand for “standard (or strong)” and “weak”

magnetic fields, respectively. The aim of these groups is

to investigate how the longitudinal-wave excitation on

the photosphere affects the properties of the solar wind.

For this purpose, we compare cases with different am-

plitudes of 〈δv‖,�〉 for a fixed transverse amplitude of

〈δv⊥,�〉 = 0.6 km s−1. In the second group, we adopt

the equipartition magnetic field, B� = 1300 G, at the

photosphere from 8πp�/B2
� = 1 (Section 3) to model

observed kilo-Gauss patches (Tsuneta et al. 2008; Ito

et al. 2010). In the third group, in order to examine

the effect of the geometry of magnetic flux tubes on

the propagation and dissipation of waves in the chro-

mosphere, we reduce B� to 1/4 of that of the second

group with keeping the field strength above the corona

(Section 4.1).

In order to extensively investigate the effect of longitu-

dinal waves on the solar wind, the second group in par-

ticular is investigating a wide range of 0 < 〈δv‖,�〉 < 3.0

km s−1. 〈δv‖,�〉 &2 km s−1, which is larger than the ob-

served average value explained above, targets transient

large-amplitude disturbances (e.g., Oba et al. 2017b).

We perform the simulations for a sufficiently long time

in order to study the average behavior of the atmosphere

and wind after they reach a quasi-steady state. To sat-

isfy this requirement, the simulation time is set to 4500

minutes for the cases with 〈δv‖,�〉 = 0 − 1.2 km s−1

and 6000 minutes for the cases with 〈δv‖,�〉 = 1.5− 3.0

km s−1. Even after the quasi-steady state is achieved,

the radial profile fluctuates in time. Therefore, when we

compare average properties of different cases, we take

the average of physical quantities for 1500 minutes be-

fore the end of the simulation.

3. RESULTS

In this section, we show results of the cases of the

standard magnetic field, BsVyy.

3.1. Overview: comparison of radial profiles

To see the overview, we show how the radial profile of

the atmosphere and wind depends on the longitudinal-

wave amplitude on the photosphere. Figure 3 (a) and

(b) show the time-averaged radial profiles of the temper-

ature T and radial velocity vr for three cases: 〈δv‖,�〉 =

0.0 km s−1 (BsV00, blue-dashed line), 〈δv‖,�〉 = 0.6 km

s−1 (BsV06, green-solid line), and 〈δv‖,�〉 = 1.8 km s−1

(BsV18, red-dotted line). Also shown by symbols are

the observed values taken from the literature (see the

caption for detail). Several features are found in this

comparison.

1. The transition region is higher in the large-〈δv‖,�〉
cases. Given that the upward motion of the transi-

tion region (spicules; see Section 4.6) is likely to be

driven by longitudinal waves, the higher transition

region is a natural consequence of larger-amplitude

longitudinal waves.
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Figure 3. Time-averaged wind profiles of cases with
〈δv‖,�〉 = 0 km s−1 (blue dashed; BsV00), 0.6 km s−1 (green
solid; BsV06) and 1.8 km s−1 (red dotted; BsV18) in com-
parison with observations. (a): Temperature. The circles
(Fludra et al. 1999) show the radial distribution of electron
temperature observed by CDS/SOHO. (b): Radial veloc-
ity. The circles (Teriaca et al. 2003) and the stars (Zangrilli
et al. 2002) represent proton outflow speeds in polar regions
observed by SOHO. The location of the top of the chromo-
sphere at T = 2× 104 K for each case is shown by diamonds
in both panels.

2. No significant differences are seen in the coronal

temperature, regardless of the larger energy injec-

tion on the photosphere.

3. In the vr profiles, while the outflow in the inner

region (r/R� − 1 . 10) is slightly faster in large-
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Figure 4. Time-averaged density profiles in the chro-
mosphere and the low corona in comparison to observations.
The line types are the same as those in Figure 3. The squares
represent electron density (right axis) obtained from obser-
vations of multiple total solar eclipses during solar minimum
phases (Saito et al. 1970). The crosses and triangles (Wil-
helm et al. 1998) are electron density observed by SOHO in
interplume lanes and plume lanes, respectively. Open and
filled diamonds show the location of the top of the chromo-
sphere at T = 2×104 K and the location of the coronal base
at T = 5× 105 K, respectively.

〈δv‖,�〉 cases, the terminal velocity is nearly invari-

ant with 〈δv‖,�〉. This shows that the variety in

the solar wind velocity is unlikely to come from the

longitudinal-wave injection from the photosphere.

Figure 4 shows the radial profiles of the mass density

ρ (left axis) in the chromosphere and corona (0.005 ≤
r/R� − 1 ≤ 1), in comparison to the observed electron

densities ne (right axis) in the corona. In converting ne
to ρ, we assume that the corona is composed of fully

ionized hydrogen plasma, that is, ρ = mHne. The line

format is the same as that of Figure 3. In contrast to

the temperature and velocity, the density depends sig-

nificantly on 〈δv‖,�〉. Specifically, the coronal density

is four times larger in 〈δv‖,�〉 = 1.8 km s−1 than in

〈δv‖,�〉 = 0.0 km s−1. Given that the filling factor of

the open flux tube fop is fixed and the wind velocity is

nearly independent from 〈δv‖,�〉, the larger coronal den-

sity means the larger mass-loss rate Ṁw, which is given

by

Ṁw = 4πr2fopρvr. (44)

Our simulation results show that the wind mass-loss rate

is sensitive to the longitudinal-wave injection. The un-

derlying physics is discussed in detail in the following

sections.
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Figure 5. Mass loss rate versus injected longitudinal wave
amplitudes. Left and right axes indicate ∆Ṁw (Equation
(45)) and Ṁw (Equation (44)), respectively. Blue star sym-
bols with error bars show time-averaged Ṁw of the BsVyy
cases with maximum and minimum values during the period
of the time average. Red open circles represent the theoret-
ical prediction of Equation (61) introduced by Cranmer &
Saar (2011). The blue solid line is the power law fit to the
time-averaged ∆Ṁw for 〈δv‖,�〉 ≤ 2.7 km s−1(Equation 46).

3.2. Mass-loss rate and Wind Energetics

To see more quantitatively how the mass-loss rate de-

pends on the photospheric longitudinal-wave amplitude

〈δv‖,�〉, we present in Figure 5 the relation between

〈δv‖,�〉 and the mass-loss rate (blue stars) evaluated at

r = rout; shown on the right axis is Ṁw and shown on

the left axis is the enhancement of the mass loss rate

∆Ṁw, which is defined by

∆Ṁw = Ṁw − Ṁ0
w, (45)

where Ṁ0
w (= 1.32 × 10−14M� yr−1) denotes the

mass-loss rate derived from the case with 〈δv‖,�〉 =

0.0 km s−1 (BsV00). The time variability is also pre-

sented by vertical error bars taken from the maximum

and minimum values during the time averages. Cases

with larger 〈δv‖,�〉 exhibit higher time variability, which

is discussed later in Section 4.6.

The blue solid line in Figure 5 is the power-law fit to

the time-averaged ∆Ṁw in a range of 〈δv‖,�〉 ≤ 2.7 km

s−1:

∆Ṁw = 1.41〈δv‖,�〉1.05 10−14M� yr−1. (46)

The fitting formula indicates that ∆Ṁw increases almost

linearly with 〈δv‖,�〉 until saturating above 〈δv‖,�〉 &

0.0 0.6 1.2 1.8 2.4 3.0
〈δv‖,�〉 [km s−1]

1

10

100

L
/L

A
,�

[%
]

LA,cb/LA,�

LG,cb/LA,�

LK,out/LA,�

LR,cb/LA,�

Figure 6. Various components of surface-integrated en-
ergy fluxes normalized by the Alfvénic Poynting flux at the
photosphere with 〈δv‖�〉. Cian stars, red pentagons, and
green open circles with solid lines respectively denote the
integrated radiative cooling loss (Equation (53)), Alfvénic
Poynting flux (Equation (50)), and gravitational potential-
energy flux (Equation (52)) measured at the coronal base.
Black triangles with dashed line represent the kinetic energy
flux (Equation (48)) at r = rout.

2.7 km s−1. The linear dependence indicates that the

increase of Ṁw is slower than the increase of the injected

energy flux carried by the longitudinal waves ∝ 〈δv‖,�〉2.

This implies that not all of the additional input energy

of the longitudinal waves, but a portion of it, is used to

enhance the mass loss. One possible reason is that, as

〈δv‖,�〉 increases, a larger fraction of the input longitu-

dinal waves dissipates in the chromosphere due to more

efficient shock formation.

Although the mass-loss rate depends on the amplitude

of the longitudinal wave in the photosphere, it does not

mean that the longitudinal wave is the main driver of

the solar wind. As shown in Appendix A, without trans-

verse wave injection (B0V06), the atmosphere is heated

only up to a few times 105 K and steady outflows do

not occur by the acoustic waves from the photosphere.

Thus, the interaction between longitudinal and trans-

verse waves is possibly the key to understand the cause

of the enhancement of the mass loss. To figure out what

caused the increase of Ṁw, we investigate the global

energetics of the wind, which is a key to understand

the scaling law of mass-loss rate (Cranmer & Saar 2011;

Shoda et al. 2020). In particular, we consider the radia-
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tive energy loss to discuss the energy conservation law

from the photosphere to the solar wind (Suzuki et al.

2013).

In the quasi-steady state, the time averaged energy

conservation Equation (8) is given by

d

dr
(LK + LE + LA − LC − LG) ≈ −4πr2fopQR, (47)

where

LK =
1

2
ρv3r4πr2fop, (48)

LE =
γ

γ − 1
pvr4πr

2fop, (49)

LA =

[(
1

2
ρv2
⊥ +

B2
⊥

4π

)
vr −

Br
4π

(v⊥ ·B⊥)

]
4πr2fop,

(50)

LC = −qcnd4πr2fop, (51)

LG = ρvr
GM�
r

4πr2fop = Ṁw
GM�
r

(52)

are the surface-integrated kinetic energy flux, enthalpy

flux, Poynting flux, conductive flux, and gravitational

potential-energy flux, respectively. We note that Ṁw

in Equation (52) can be assumed to be constant in the

quasi-steady state. We define the radiation luminosity

LR as follows:

LR(r) =

∫ r

rlch

QR4πr2fopdr, (53)

where rlch is the radial distance in the lower chromo-

sphere. We set rlch − R� = 0.7 Mm (rlch/R� = 1.001).

Below r < rlch we assume LR = 0 because the exponen-

tial (Newtonian) cooling, which dominates the radiation

in r . rlch, should yield negligible net radiative loss.

Equation (47) is then rewritten in terms of LR as fol-

lows.

LK + LE + LA − LC − LG + LR ≡ Ltot ≈ const, (54)

where Ltot is the total surface-integrated energy flux,

which is expected to be constant in r in the quasi-steady

state. By relating the values of Ltot at different radial

distances, several analytical relations are derived.

1. Photosphere: Because the kinetic, thermal, and

conductive energy fluxes are negligibly small on

the nearly static and low-temperature photo-

sphere, the dominant terms in Ltot are the Poynt-

ing flux and the energy flux of gravitational po-

tential, that is,

Ltot ≈ LA,� − LG,� = LA,� −
1

2
Ṁwv

2
g,�, (55)

where vg,� =
√

2GM�/R� = 617 km s−1 is the

escape velocity. We note that LR,� = 0 is assumed

as described above.

2. Coronal base: Because the mean outflow velocity

is small at the coronal base, LK and LE are negli-

gible, and thus, Ltot is approximated by

Ltot ≈ LA,cb − LC,cb − LG,cb + LR,cb, (56)

where the subscript “cb” denotes the value at the

coronal base, which we set rcb/R� = 1.03. We

have confirmed that the conductive luminosity is

small at the coronal base because the tempera-

ture gradient is already shallow. Therefore, we

can safely simplify Equation (56) to

Ltot ≈ LA,cb − LG,cb + LR,cb. (57)

3. Distant solar wind (outer boundary): Because the

kinetic energy flux dominates the enthalpy, Poynt-

ing, and conductive fluxes in the super-Alfvénic

region, Ltot,out is approximated by

Ltot ≈ LK,out + LR,out ≈ LK,out + LR,cb, (58)

where the subscript “out” denotes the value at the

outer boundary (r = rout). Because the radiative

loss above the coronal base is generally negligible,

we use LR,out ≈ LR,cb (but see discussion below).

The energy conservation between the photosphere and

the coronal base (Eq.s. (55) and (57)) yields

LA,� ≈ LA,cb + LR,cb, (59)

where we approximate LG,� ≈ LG,cb. Cian stars and
red pentagons in Figure 6 respectively denote LR,cb and

LA,cb normalized by LA,�. Equation (59) is satisfied if

the sum of these two components is 100 % in Figure 6.

As one can see, however, this conservation is not per-

fectly fulfilled, possibly because of the treatment of the

radiative cooling in the low chromosphere. As described

previously, LR excludes the contribution of the radiation

cooling below r < rlch. By this assumption, we should

underestimate LR, leading to LA,� > LA,cb + LR,cb.

Although we have to bear in mind that LR,cb could be

underestimated, an increasing trend of LR,cb for 〈δv‖,�〉
is physically plausible; the density in the chromosphere

and the low corona is higher for larger 〈δv‖,�〉 (Fig-

ure 4), which yields larger radiative cooling. As a re-

sult, LA,cb/LA,� does not monotonically increase with

〈δv‖,�〉 but eventually saturates for 〈δv‖,�〉 & 2 km s−1

(Figure 6) because a large portion of the input Alfvénic
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Poynting flux is already lost via radiation below the

coronal base.

Next, the energy conservation between the coronal

base and the outer boundary (Eq.s (57) and (58)) yields

LK,out ≈ LA,cb − LG,cb. (60)

The green open circles and black triangles in Figure 6

respectively represent LG,cb and LK,out normalized by

LA,�. LA,cb, LG,cb and LK,out in Figure 6 exhibit a

similar trend on 〈δv‖,�〉; they increase in 〈δv‖,�〉 . 2

km s−1 and saturate for 〈δv‖,�〉 & 2 km s−1. Figure 6

also shows that Eq.(60) is reasonably satisfied, that is,

LK,out + LG,cb ≈ LA,cb.

The wind velocity can be well approximated by the

escape velocity, vr,out ≈ vg,� =
√

2GM�/R�, which is

also a reasonable assumption in our numerical results

(Table 1). Then, by using LK,out ≈ LG,cb ≈ Ṁwv
2
g,�/2,

we can rewrite Equation (60) as follows:

Ṁw ≈
LA,cb

v2g,�
, (61)

as already found in Cranmer & Saar (2011). The com-

parison of Ṁw (blue stars) to LA,cb/v
2
g,� (orange circles)

in Figure 5 confirms that Equation (61) explains the ob-

tained mass loss rate quite well particularly in the small

〈δv‖,�〉 . 1 km s−1 regime. In other words, Ṁw is pri-

marily determined by the Alfvénic Poynting flux at the

coronal base. In contrast, Equation (61) slightly overes-

timates the obtained Ṁw in the larger 〈δv‖,�〉 & 1 km

s−1 cases because the radiative cooling above r > rcb is

not negligible in Equation (58) owing to the larger den-

sity in the corona (Figure 4). However, even in these

cases with large 〈δv‖,�〉, Equation (61) still gives a rea-

sonable estimate of Ṁw.

In summary, the increase and saturation of Ṁw on

〈δv‖,�〉 directly reflect the trend of the Alfvénic Poynt-

ing flux at the coronal base. The saturation can be in-

terpreted by the excess of the radiative cooling discussed

previously. On the other hand, in order to understand

the increase of LA,cb in 〈δv‖,�〉 ≤ 2.7 km s−1, we need to

further examine detailed properties of waves below the

coronal base, which is presented in the following subsec-

tion.

3.3. Dissipation and Mode Conversion of Waves

To understand the dependence of LA,cb on 〈δv‖,�〉 in

Figure 6, we examine the propagation and dissipation

of transverse waves (≈ Alfvén waves) from the chromo-

sphere to the low corona. Shoda et al. (2020) introduced

an equation that describes the evolution of Alfvén waves:
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Figure 7. Comparison of the radial profiles of the surface
integrated Alfvénic Poynting flux (a) and the fractions of the
energy loss by the turbulent dissipation (b) and the mode
conversion (c). Blue dashed, green solid and red dotted lines
show the results of 〈δv‖,�〉 = 0 km s−1 (BsV00), 0.6 km s−1

(BsV06) and 1.8 km s−1 (BsV18), respectively. In the top
panel, the location of the top of the chromosphere at T =
2× 104 K for each case is shown by diamonds.
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∂

∂t

(
1

2
ρv2⊥ +

B2
⊥

8π

)
+

1

4πr2fop
∂

∂r
LA = −ε‖↔⊥ −Qturb

(62)

where ε‖↔⊥ and Qturb indicate the mode conversion

from transverse waves to longitudinal waves and the en-

ergy loss by turbulent cascade, respectively. These are

explicitly written as

ε‖↔⊥ = −vr
∂

∂r

(
B2
⊥

8π

)
+

(
ρv2⊥ −

B2
⊥

4π

)
vr
d

dr
ln(r

√
f)

(63)

Qturb = cdρ
∑
i=θ,φ

∣∣z+i ∣∣ (z−i )2 +
∣∣z−i ∣∣ (z+i )2

4λ⊥
. (64)

We note that the first term of Equation (63) denotes

the nonlinear excitation of longitudinal perturbation

from the magnetic fluctuation associated with transverse

waves (Hollweg 1971; Kudoh & Shibata 1999; Suzuki

& Inutsuka 2005; Matsumoto & Shibata 2010). Using

εr↔⊥ and Qturb, we define the the energy loss rates via

the turbulent dissipation and the mode conversion as

∆LA,turb(r) =

∫ r

R�

dr4πr2fopQturb (65)

and

∆LA,mc(r) =

∫ r

R�

dr4πr2fopε‖↔⊥. (66)

Figure 7 shows properties of the damping of Alfvénic

waves in the chromosphere; Panel (a) presents the ra-

dial profile of LA; Panels (b) and (c) present ∆LA,turb

(energy loss by turbulence) and ∆LA,mc (energy loss by

mode conversion), respectively. We note that the net
loss of Alfvénic waves, LA,� − LA, is not always equal

to the sum of these energy losses, possibly because of

numerical dissipation.

As shown in Figure 7, the mode conversion rate and

the turbulent loss rate behave differently. A general

trend is that ∆LA,turb increases and ∆LA,mc decreases

with increasing 〈δv‖,�〉. As 〈δv‖,�〉 increases, the mode

conversion from transverse (Alfvénic) waves to longitu-

dinal (acoustic) waves is suppressed; instead, the “in-

verse conversion” (longitudinal-to-transverse wave en-

ergy transfer), ∆LA,mc < 0, takes place in the case

with large 〈δv‖,�〉 (red dotted; BsV18). This is because

transverse waves are excited at the region with plasma

β ≈ 1 in the chromosphere by the mode conversion from

the large-amplitude longitudinal waves injected from the

photosphere (Cally 2006; Schunker & Cally 2006; Cally

& Goossens 2008). We here note that the conversion

from the longitudinal mode to the transverse mode oc-

curs even in the simple 1D geometry because the di-

rection of magnetic field, (Brr̂ + B⊥)/|B|, is not par-

allel with the direction of the wave propagation that is

strictly along the r direction, where r̂ is the radial unit

vector.

As a result of the excitation of transverse wave from

longitudinal wave, LA increases near the surface (Figure

7(a)). The amplitude of the excited transverse waves in-

creases with 〈δv‖,�〉, which raises the Alfvénic Poynting

flux at the coronal base (Figure 6). As a consequence

of increased energy injection to the corona (increased

LA,cb), the coronal heating rate increases, which leads

to larger coronal density (see discussion in Section 2.5).

In fact, as shown in Figure 4, the density at the coronal

base (where T = 5× 105 K) is higher for larger 〈δv‖,�〉,
even though the coronal base is located at a higher alti-

tude.

Another interesting point is that the velocity of the

wind is insensitive to the value of 〈δv‖,�〉 (bottom panel

of Figure 3); the increase of Ṁw(∝ ρvr) is solely by

the increase in the density. According to the standard

model of the solar/stellar winds (Hansteen & Leer 1995;

Lamers & Cassinelli 1999), the additional heating and

momentum inputs in the subsonic region (vr < a) of

a wind raise the mass-loss rate with negligible effects

on the terminal velocity, while those in the supersonic

region (vr > a) do not affect the mass-loss rate but re-

sult in the higher terminal velocity. Based on this back-

ground, to understand the behavior of wind speed with

respect to 〈δv‖,�〉, we examine the radial distribution of

the energy transfer rate from the Alfvénic wave to the

gas from the corona to the wind. Specifically, we calcu-

late the loss rate of the Alfvénic Poynting flux per unit

mass, defined as

ζA = − 1

4πρr2fop
∂LA

∂r
. (67)

Because of energy conservation, ζA corresponds to the

energy (= heating + work) transfer rate from the

Alfvénic Poynting flux to the plasma. Figure 8 presents

ζA of the cases with 〈δv‖,�〉 = 0.6 km s−1(BsV06; green

solid) and 1.8 km s−1(BsV18; red dashed) normalized

by ζA of 〈δv‖,�〉 = 0 (BsV00). The increase in

〈δv‖,�〉 promotes the energy input in the subsonic region

(r . 2− 3R�) but does not affect (or even reduces) the

energy input in the supersonic region (r & 2− 3R�). In

other words, the vertical oscillation on the photosphere

affects only the subsonic region. For this reason, an ad-

dition of 〈δv‖,�〉 does not affect the wind velocity but

only increases the mass-loss rate.

4. DISCUSSION
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Figure 8. Dissipation rate of Alfvénic Poynting flux per
unit mass (Equation (67)) of 〈δv‖,�〉 = 0.6 km s−1 (BsV06;
green solid line) and 1.8 km s−1 (BsV18; red dashed line).
The values are normalized by that of 〈δv‖,�〉 = 0 (BsV00).

4.1. Dependence on Magnetic Field in Chromosphere
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Figure 9. Comparison of the radial profiles of time aver-
aged 〈βr〉 (Equation (68)). Thin and thick lines correspond
to the cases of Br,� = 1300 G (BsVyy) and 325 G (BwVyy),
respectively. Dashed and solid lines show the cases with
〈δv‖,�〉 = 0 (BxV00) and 0.6 km s−1 (BxV06), respectively.
Diamonds show the location of the top of the chromosphere
at T = 2× 104 K for each case.

We have shown that the nonlinear mode conversion

between transverse waves and longitudinal waves in the

chromosphere is the key to determine the wind prop-

erties when both transverse and longitudinal perturba-

tions are input at the photosphere. The mode conver-

sion rate sensitively depends on plasma β = 8πp/B2

with peaked at β ≈ 1 (Hollweg 1982; Spruit & Bogdan

1992). Therefore, it is expected that the magnetic field

strength in the chromosphere plays an essential role in

determining the Alfvénic Poynting flux that enters the

corona. Here, we perform simulations in a flux tube

with weaker magnetic field from the photosphere to the

chromosphere but with the same field strength above

the corona (“BwVyy” in Table 1).

Figure 9 compares the radial profiles of the time av-

eraged plasma beta values of four cases, BsV00, BsV06,

BwV00, and BwV06, that are evaluated from the only

radial component of the magnetic field,

〈βr〉 ≡
8π〈p〉
B2
r

. (68)

We note that, although βr ≥ β, the difference is small

because |δB⊥| < |Br|.
Figure 10 compares the properties of Alfvén waves of

these four cases. The panels (a), (c), and (d) are the

same as (a), (b) and (c) of Figure 7 but the vertical axis

of (a) and the horizontal axis are shown in logarithmic

scale. The panel (b) presents the ratio of the incom-

ing component L−A , to the outgoing component L+
A, of

Alfvénic Poynting luminosity, which are defined by

L+
A = ρ(z+⊥)2(vr + vA)πr2fop, (69)

L−A = ρ(z−⊥)2(vr − vA)πr2fop, (70)

where vA = Br/
√

4πρ is the Alfvén velocity along the r

direction. We note that LA = L+
A + L−A .

Let us begin with the comparison of the cases with-

out 〈δv‖,�〉, BwV00 (light blue thick dashed lines) and

BsV00 (deep blue thin dashed lines). Figure 10 (a)

shows that LA of the weak field case (BwV00) is larger
than LA of the standard field case (BsV00) near the pho-

tosphere. However, the former declines more rapidly in

the chromosphere to be smaller than the latter above the

upper chromosphere of r/R� − 1 > 2 × 10−3. As a re-

sult, the mass loss rate Ṁw of BwV00 is slightly smaller

than Ṁw of BsV00 (Table 1), which is consistent with

Equation (61). The rapid damping of the Alfvén waves

is mainly because of more efficient turbulent dissipation

(Figure 10(c)). Utilizing Equation (1), we can rewrite

the correlation length (Equation (26)) as follows:

λ⊥ = λ⊥,�
r

R�

√
fop

fop�
, (71)

where we are adopting the same λ⊥,� = 150 km in both

cases (Equation (27)). Since the flux-tube expansion of

the weak field case is smaller in our setup, fop/fop� is
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Figure 10. Comparison of the radial profiles of the surface-
integrated Alfvénic Poynting flux (a), the ratio of the inward
Poynting flux to the outward Poynting flux (b), and the frac-
tion of the energy loss by the turbulent dissipation (c) and
the mode conversion (d). The line types are the same as
those in Figure 9. In the top panel, the location of the top
of the chromosphere at T = 2× 104 K for each case is shown
by diamonds.

smaller, which enhances the turbulent dissipation. The

rapid turbulent damping in the chromoshere reduces the

amplitude of the outgoing Alfvén waves in the upper

region. The reflected Alfvén waves downward to the

photosphere are also suppressed to give the smaller ratio

of L−A/L
+
A near the photosphere of the weak field case

(Figure 10(b)). Therefore, the net outgoing Poynting

flux, LA(= L+
A + L−A), is larger there (Figure 10(a)).

The comparison of BwV06 to BwV00 indicates that

Ṁw increases more than twice by the additional input

of the longitudinal perturbation of 〈δv‖,�〉 = 0.6 km s−1

in the weak field condition (Table 1). The enhancement

factor of Ṁw is considerably larger than the value (≈ 1.5

times) obtained in the standard field condition. This is

because in the weak field case of BsV06 (orange thick

lines) larger Alfvénic Poynting flux reaches the coro-

nal base (Figure 10(a)) by the generation of transverse

waves through the mode conversion (Figure 10(d)) in

spite of the higher turbulent loss (Figure 10(c)). Fig-

ure 9 shows that 〈βr〉 of this case decreases with height

and crosses unity in the chromosphere, which induces

the efficient longitudinal-to-transverse mode conversion

(Figure 10(d)) as shown by Cally (2006) and Cally &

Goossens (2008). In contrast, 〈βr〉 stays < 1 in the

standard field case of BsV06 (Figure 9). As a result,

∆LA,mc remains positive (Figure 10 (d)), namely the

excitation of transverse waves by the mode conversion

is negligible. We can conclude that, in addition to the

longitudinal fluctuation in the photosphere (Section 3),

the magnetic field strength in the chromosphere is also

an essential factor to determine the global wind proper-

ties through nonlinear processes of MHD waves.

4.2. Limitation of the 1D Geometry

We have simulated the propagation, dissipation, and

mode conversion of MHD waves in 1D super-radially

open flux tubes. While we took the phenomenological

approach to the Alfvén-wave turbulence (Section 2.3)

to consider the 3D effect, multi-dimensional effects are

also important in other wave processes (e.g. Hasan & van

Ballegooijen 2008; Matsumoto & Suzuki 2012; Iijima &

Yokoyama 2017; Matsumoto 2021). The nonlinear mode

conversion, which is a key process in the present paper,

is probably one of those that have to take into account

3D effects because the conversion rate increases with

the attacking angle between the direction of a magnetic

field line and a wave-number vector (Schunker & Cally

2006). Since the attacking angle tends to be restricted

to a small value in the 1D treatment, the amount of the

generated transverse waves by the mode conversion may

be underestimated in our simulations.

Although we have only considered shear Alfvén waves,

torsional Alfvén waves are also expected to be excited
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(Kudoh & Shibata 1999). The nonlinear steepening of

the torsional mode is slower than that of the shear mode

(Vasheghani Farahani et al. 2012). Therefore, if we con-

sidered torsional waves in addition to shear waves, the

dissipation rate of the transverse waves would be slower,

which may affect the global wind properties.

4.3. Missing physics in the chromosphere

We described that the radiative cooling in the chro-

mosphere governs the saturation of the Alfvénic Poynt-

ing flux that reaches the coronal base in the cases of

the large 〈δv‖,�〉 (Figure 6 and Sections 3.2 & 3.3).

The local thermodynamical equilibrium is not strictly

satisfied in the chromosphere, and the radiative cool-

ing is governed by multiple bound-bound transitions

(Carlsson & Leenaarts 2012). In addition, the radia-

tive loss also affects the propagation of compressional

waves such as acoustic waves (e.g., Bogdan et al. 1996).

Ideally, detailed radiative transfer has to be solved to ac-

curately handle these complicated processes, although

we have taken the approximated prescription to con-

sider them phenomenologically (Section 3.2). A more

accurate treatment (e.g., Hansteen et al. 2015; Iijima &

Yokoyama 2017) might modify the radiative loss rate,

which we plan to tackle in our future works.

The gas in the chromosphere is partially ionized

plasma. The relative motion between charged particles

and neutral particles, which is called ambipolar diffu-

sion, promotes damping of transverse waves and heating

the gas (Khodachenko et al. 2004; Khomenko & Col-

lados 2012). However, in the current condition of the

solar chromosphere, the ambipolar diffusion does not

give a large impact on the low-frequency Alfvén waves

with < 10−2 Hz considered in this paper (Equation

(39); Arber et al. 2016), although it may affect higher-

frequency Alfvén waves and rapid dynamical phenomena

(e.g., Singh et al. 2011). Another interesting aspect is

that magnetic tension, which is induced by ambipolar

diffusion, can be an additional generation mechanism of

transverse waves in the chromosphere (Mart́ınez-Sykora

et al. 2017). In future, the effect of partial ionization

should be investigated also in the context of the so-

lar/stellar wind studies.

4.4. Density fluctuation

Figure 11 compares the radial profiles of normalized

density fluctuations of different 〈δv‖,�〉 cases. Density

fluctuations are larger near the surface for larger 〈δv‖,�〉
simply due to the larger injection of the longitudinal

perturbations. However, 〈δρ〉/〈ρ〉 of the different cases

converges to a similar trend in the chromosphere of

r/R� − 1 & 3 × 10−2. This saturation possibly comes

10−3 10−2 10−1 100 101 102

r/R� − 1

10−2

10−1

100

〈δ
ρ
〉/
〈ρ
〉

No longitudinal waves

Weak longitudinal waves

Strong longitudinal waves

Figure 11. Comparison of the radial profiles of the root-
mean-squared density fluctuations normalized by the aver-
age density 〈δρ〉/〈ρ〉 =

√
〈ρ2〉 − ρ2ave/〈ρ〉 of the three cases,

BsV00 (dashed blue), BsV06 (solid green), and BsV18 (dot-
ted red). Diamonds show the location of the top of the chro-
mosphere at T = 2× 104 K for each case.

from more efficient longitudinal-to-transverse mode con-

version in the chromosphere (Figure 7) in addition to

more rapid dissipation of longitudinal wave by shock

formation.

Above that, all the presented three cases exhibit a

first peak of 〈δρ〉/〈ρ〉 around r/R�− 1 ∼ (2− 5)× 10−2

from the transition region to the low corona. This peak

reflects time-variable spicule activities (see Section 4.6);

density fluctuations are excited by the nonlinear mode

conversion from transverse waves to longitudinal waves

via the gradient of the magnetic pressure associated with

the Alfvénic waves (Hollweg 1971; Kudoh & Shibata

1999; Matsumoto & Shibata 2010). As explained in

Figure 7, the upward Alfvénic Poynting flux is larger

for larger longitudinal-wave injection at the photosphere

even though the same amplitude of transverse fluctua-

tions is excited. Therefore, taller spicules are generated

and the first peak is located at a higher altitude for

larger 〈δv‖,�〉.
Although the location of the first peak depends on

〈δv‖,�〉, the radial profiles of 〈δρ〉/〈ρ〉 converge to a sim-

ilar level above r/R� & 1 almost independently from

〈δv‖,�〉. A gentle second peak of 〈δρ〉/〈ρ〉 is formed

around r/R� ∼ 5 by the parametric decay instabil-

ity of Alfvénic waves (Terasawa et al. 1986; Tenerani

et al. 2017; Suzuki & Inutsuka 2006; Shoda et al. 2018b;

Réville et al. 2018).

Since the density fluctuation in the corona and solar

wind is observable by remote sensing, our model could
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Figure 12. Comparison of the radial profiles of the root-
mean-squared Elsässer variables of the outward (thick lines)
and inward (thin lines) components. The line types are the
same as those in Figure 11. Red and blue circles respectively
represent the observed amplitudes of z+⊥ and z−⊥ from PSP
(Chen et al. 2020). Diamonds show the location of the top
of the chromosphere at T = 2× 104 K for each case.

be constrained by the detailed comparison with obser-

vation (Miyamoto et al. 2014; Hahn et al. 2018; Krupar

et al. 2020). For example, it is reported that the rela-

tive density fluctuation in the coronal base is as large as

10 % or larger (Hahn et al. 2018; Krupar et al. 2020),

which possibly indicates the non-negligible fraction of

compressional waves present in the coronal base.

4.5. Alfvénicity of the solar wind

In most cases, the simulated solar wind is fast, in that

the termination velocity mostly exceeds 500 km s−1.

The fast solar wind is known to be Alfvénic, that is,

the outward Elsässer variable is much larger than the

inward Elsässer variable in the fast streams. Here the

Alfvénic nature of the simulated solar wind is discussed.

Figure 12 compares the numerical results of the

time averaged outgoing and incoming Elsässer variables

〈z+〉 and 〈z−〉 to observations at r ≈ 40R� by the

Parker Solar Probe (hereafter PSP) (Chen et al. 2020).

The obtained 〈z±〉 from these three cases are consis-

tent with the observed z+ and z− that show large

scatters. Both 〈z+〉 and 〈z−〉 of our numerical results

are larger for larger 〈δv‖,�〉 in the coronal regions of

10−2 < r/R� − 1 < 1. However, larger 〈z±〉 yields

larger turbulent loss as shown in Figure 7 , which sup-

presses the increase of 〈z±〉. As a result, almost the

same maximum amplitudes of 〈z±〉 are obtained for the

different 〈δv‖,�〉 cases in a self-regulated manner, sim-

ilarly to the density perturbations (Figure 11). In the

solar wind region, r/R� & 10, 〈z±〉 is smaller for larger

〈δv‖,�〉 because the density is higher (Figure 4) .

4.6. Time Variability

Figure 13 shows time versus radial distance diagrams

of the mass density in the low atmosphere. The left and

right columns respectively present the cases with the

standard (BsVyy) and weak (BwVyy) magnetic field in

the chromosphere. The top, middle, and bottom rows

correspond to 〈δv‖,�〉 = 0, 0.6, and 1.8 km s−1, re-

spectively. The yellow lines represent the positions of

T = 2 × 104 K, which correspond to the bottom of the

transition region.

One can see that the transition region moves up and

down in all the cases, which should be observed as

spicules (e.g., Beckers 1972; De Pontieu et al. 2007; Shoji

et al. 2010; Okamoto & De Pontieu 2011; Yoshida et al.

2019; Tei et al. 2020). The velocity of the upward mo-

tions can be derived to be an order of ∼ 10 km s−1

from the slope of yellow lines, which roughly coincides

with the sound speed and accordingly the propagation

speed of slow MHD waves. Namely the gas in the up-

per chromosphere is lifted up by longitudinal slow-mode

waves that are generated from transverse waves through

the mode conversion in the upper chromosphere (Holl-

weg 1982; Suematsu et al. 1982; Matsumoto & Shibata

2010; Sakaue & Shibata 2021).

In the cases without longitudinal perturbations (top

panels of Figure 13), the stronger field in the chromo-

sphere (top-left) gives the higher and more dynamical

transition region because of the larger Alfvénic Poynting

flux (Figure 10 and Section 4.1). By adding the longi-

tudinal perturbations at the photosphere, the transition

region behaves more abruptly and the average height in-

creases. The comparison of the middle right panel to the
top right panel indicates that the activity of the tran-

sition region is drastically enhanced in the weak field

case by the addition of 〈δv‖,�〉 = 0.6 km s−1. This is

because in the weak field condition transverse waves are

generated more effectively from acoustic waves around

βr = 1 (blue line) in the chromosphere as discussed in

Section 4.1.

The bottom panels of Figure 13 exhibit a dynamical

behavior of transition regions with chromospheric gas

being violently uplifted to higher altitudes by the injec-

tion of the large-amplitude vertical perturbation with

〈δv‖,�〉 = 1.8 km s−1. Multiple yellow lines are fre-

quently plotted at single time slices. This indicates that

cooler gas with T < 2× 104 K is transiently distributed

above hotter gas with T > 2× 104 K.

5. SUMMARY
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Figure 13. Time-distance diagrams of mass density in the lower atmospheres of BsV00 (a), BsV06 (b), BsV18 (c), BwV00 (d),
BwV06 (e) and BwV18 (f). The yellow and blue solid lines represent contour lines of T = 2× 104[K] and βr = 1, respectively.

We investigated how the properties of solar winds are

affected by the p-mode like longitudinal perturbation at

the photosphere. We performed 1D simulations from

the photosphere to beyond several tens of solar radii

for Alfvén-wave-driven winds in the wide range of the

amplitude of the vertical perturbation of 0.0 km s−1 ≤
〈δv‖,�〉 ≤ 3.0 km s−1 in super-radially open magnetic

flux tubes.

The coronal temperature and wind velocity are not

significantly affected by the additional input of the lon-

gitudinal perturbation (Figure 3). However, higher coro-

nal density is obtained for larger 〈δv‖,�〉 (Figure 4), and

accordingly, the mass-loss rate increases with 〈δv‖,�〉
by up to ≈ 4 times (Figure 5) because larger Alfvénic

Poynting flux enters the corona so as to drive denser out-

flows as a result of more efficient chromospheric evapora-

tion. The p-mode like vertical oscillation excites acous-

tic waves, a part of which is converted to the transverse

waves by the mode conversion in the chromosphere (Fig-

ure 7). These transverse waves contribute to the upgoing
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Alfvénic Poynting flux, in addition to the Alfvén waves

that come from the photosphere. This result confirms

the observationally inferred link between p-mode oscil-

lations and Alfvénic waves in the solar corona (Morton

et al. 2019).

Cases with larger 〈δv‖,�〉 exhibit higher time variabil-

ity and larger density perturbations in the low corona.

The mass loss rate saturates when 〈δv‖,�〉 & 2.5 km

s−1, because an increase of 〈δv‖,�〉 no longer leads to

the excitation of transverse waves by the mode conver-

sion but instead is compensated by the radiative loss

by the direct shock dissipation of acoustic waves in the

chromosphere.

Simulations with weaker field strength in the low ato-

mosphere show that the magnetic field in the chromo-

sphere controls the mode conversion between longitudi-

nal and transverse modes. In the cases that include a re-

gion with plasma β ≈ 1 in the middle chromosphere, the

mode conversion effectively generates transverse waves

there even for a moderate amplitude of 〈δv‖,�〉 = 0.6

km s−1.

We conclude that p-mode oscillations at the photo-

sphere play an important role in enhancing Alfvénic

Poynting flux over the corona of the Sun and solar-type

stars.
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APPENDIX

A. ACOUSTIC WAVE-DRIVEN WIND

We examine the properties of the atmosphere of the case with the only longitudinal fluctuation (B0V06) to see if

the corona and solar wind are formed solely by acoustic waves. In order to avoid the initial infall of material from the

upper layer, we set lower initial density (ρw,0 = 10−25 g cm−3 in Eq. (36)) than that of the other cases.

Figure 14 presents the radial profile of the atmosphere averaged from t = 3500 min to t = 5000 min. The acoustic

waves that travel upward from the photosphere rapidly dissipate at low altitudes, r/R� − 1 . 0.1. Although the

atmosphere is heated up by wave dissipation of longitudinal waves, the temperature of the “corona” remains low

(. 2× 105 K, Figure 14 (a)) As a result, the gas in the upper atmosphere does not stream out. Instead, it falls down

to the surface, which is seen as negative mass loss rate, Ṁw < 0, in r/R� − 1 > 1 (Figure 14 (c)). The accretion

reduces (raises) the density in the outer (inner) region of r/R� − 1 <(>)0.5 from the initial value (Figure 14 (b)).

The accretion occurs partially because the initial density in the upper region is still higher than the hydrostatic

density with T . 105 K. We note, however, that the initial density is much lower by 6 - 7 orders of magnitude than

the observed density in the solar wind. This simulation demonstrates that even such low-density gas cannot be driven

outward only by the acoustic waves. We thus conclude, through a direct numerical demonstration, that the solar

coronal heating and the solar wind driving cannot be accomplished only by the sound waves from the photosphere.
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